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Unified spin gauge theory of electroweak and gravitational 
interactions 

J S R Chisholmt and R S Farwell$ 
i Mathematical Institute, University of Kent, Canterbury, Kent, UK 
$ St. Mary’s College, Twickenham TWl 4SX, Middlesex, UK 

Received 1 June 1988 

Abstract. A spin gauge theory describing fundamental fermions and their electroweak and 
gravitational interactions is proposed. It is modelled on an eight-dimensional curved 
manifold M and uses its associated Clifford algebra. The elements of the algebra are 
represented by 16 x 16 matrices and the fermions are represented by sixteen-component 
column vectors. The frame field is introduced as a result of factorising the fermion mass 
term in the Lagrangian density and is included in an extended covariant derivative. The 
usual gauge theoretic technique of defining free bosonic Lagrangians from the fermion 
covariant derivative, when applied to the extended covariant derivative, gives the correct 
mass matrix for the photon, W and Z bosons, together with the Einstein-Hilbert gravita- 
tional Lagrangian density modified at short distances by a term quadratic in the curvature 
coefficients. Transformation of the Lagrangian by an inner automorphism of the Clifford 
algebra gives the correct mass and interaction terms for the up and down quarks. 

1. Introduction 

In two previous papers [l, 21, we have introduced models of electroweak and gravita- 
tional interactions, using the closely related concepts of spin gauge theories and the 
frame field. These two models were based on Clifford algebras associated with different 
manifolds, and the gauge groups inducing the two interactions were different. In the 
present paper, we show that we can unify these two models, using a suitable eight- 
dimensional manifold M and demanding invariance under the combined gauge group. 

The curved manifold M is, as usual, the union of a countable number of patches, 
on each of which the system of coordinates {x”; p = 1,. . . ,8} is non-degenerate. 
However, in this paper we shall assume that no field quantity is dependent on the 
coordinates xs, x6, x, , xs. The derivatives with respect to the coordinates are a” = d / d x p ,  
so our assumption essentially implies that the operators a s ,  a6, a,, a, are zero. 

At any point x of M, the tangent space T ( x )  is spanned by the vectors 
{ r i ;  i = 1 , .  . . ,8} of a Clifford algebra, so that 

where {gV}  is the diagonal metric on the flat space T ( x )  and I is the unit scalar of the 
algebra. A fundamental concept of spin gauge theories is that the { r i }  generally 
becomes x dependent under gauge transformations, although the tangent space metric 
remains invariant. 

0305-4470/89/081059+ 13$02.50 @ 1989 IOP Publishing Ltd 1059 



1060 J S R Chisholm and R S Farwell 

The ‘frame field’ on M is, apart from a constant factor, the set of x-dependent 
matrices 

T,(x) = h k ( x ) r i  p = 1, * .  . , 8  (1.2) 

where { h L ( x ) }  defines the vierbein field on M. The frame field plays an important 
role in our theories: 

(i)  it is the square root of the metric ( g , v ( x ) )  on M, since 

v,, r u 1 =  2 k P V ( X )  (1.3) 

g p u ( x )  = g , h k ( x ) h C ( x )  (1.4) 

where 

(ii) it forms a vector basis at each point of M. 
The relation (1.2) can be inverted to give 

T i  = h Y ( x ) r , ( x )  (1.5) 

where 

h k ( x ) h r ( x ) =  8 ; .  

In this paper we assume that the 8 x 8 matrix ( h : )  has a 4 x 4 block diagonal form 
given by 

where (8:: i, p = 5,6,7,8)  denotes the 4 x 4 identity matrix. As a consequence of (1.6), 
we deduce from (1.4) that the metric ( g P y )  also has block diagonal form. Then the 
manifold M behaves in a certain sense like the union of two disjoint submanifolds 
MI and M 2 .  MI is a curved four-dimensional submanifold representing spacetime 
and M2 is a flat four-dimensional submanifold referred to as the ‘higher-dimensional 
space’. However, since the basis vectors of M ,  and M2 anticommute, M is not the 
direct product of MI and M 2 .  Thus M2 cannot be considered to be the ‘internal space’ 
of standard gauge theories. This is a crucial difference between spin and standard 
gauge theories. 

The tangent space T ( x )  can also be considered to be the union of two flat spaces 
T , ( x )  and T 2 ( x ) ,  where T 2 ( x )  is the isomorphic to the flat space M 2 ,  Since we consider 
MI to be spacetime, the tangent spaceT,(x) is spanned by the vectors {ri ; i = 1, .  . . ,4} 
of a Dirac algebra, so that 

{ri ,  r, 1 = 217, (1.7) 

where ( T ~ )  =diag(-1, -1, -1, 1) is the Minkowski metric on T l ( x ) .  
Because of the block structure of the metric and vierbein matrices, equation (1.4) 

is valid for the separate ranges 1, .  . . , 4  and 5, .  . . , 8  of all the indices. For the range 
5, . . . , 8 the equation is trivial. For the ranges i, j ,  p, v = 1, . . . ,4 ,  taking the determinant 
of each side of (1.4) and using the determinant equation 

A(%j) = -1 

gives 
h2 = - g  
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where h = A ( h l )  and g = A(g,,), so that 
h = ( - 8 )  

The invariant 4-volume element on M I  is thus 

(-g)1’2 d4x = h d4x. (1.9) 
We shall use a 4 x 4 matrix representation { y i  ; i = 1,2,3,4}  of the Dirac algebra to 

define a representation of the basis vectors {r i  ; i = 1,2,3,4} .  The pseudoscalar of the 
Dirac algebra on T l ( x )  is 

4 ?=Il Yi (1.10) 
i = l  

where, using (l . l) ,  

$ = - I .  

Then, by (1.2) and (l.lO), 
4 

Y5= rI Y , = h  
p = l  

and if y p  = g p y y y ,  then 

(1 . l la )  

( 1 . 1  1 b)  

The eightfold vector basis of T is represented, as in [l], in terms of the Dirac 
algebra and two sets of 2 x 2 Pauli matrices { p r }  and {As}, with p4 and A 4  equal to the 
corresponding unit matrices. The basis of the algebra C(2,6)  on T is essentially the 
same as that given by (2.6) of [l]: 

Ti = A 4 ~ 1  yi i = 1 , 2 , 3 , 4  ( 1 . 1 2 ~ )  
Ts = -iA2p21 (1.12b) 

r6 = iAlp21 (1.12c) 

r 7 =  A 4 P 1 7  (1.12d) 

rs = ~,p,i. (1.12e) 

Again, r: = ri = I ,  while rf = - I  ( i  # 4,8) .  The anticommutation of these eight basis 
vectors with each other justifies our statement that T is not simply the Cartesian product 
of TI and T2,  but a unified vector space spanned by the vectors (1.12), 

In 0 2 we restrict the gravitational spin gauge transformations to those that keep 
constant the matrices {Ar, p s  ; r, s = 1,2 ,3 ,4}  and the Dirac pseudoscalar 7. Thus the 
basis vectors { r i  ; i = 5,6,7,8}  of T2 remain constant under the gravitational spin gauge 
transformations. The constancy of {Ar, p , }  also implies that {r, ; p = 5,6,7,  8) is 
essentially x dependent through the action of the set { h l }  on the vectors of the Dirac 
algebra. It is characteristic of spin gauge theories that {r , }  obtains further x dependence 
through the other spin gauge transformations. The pseudoscalar 7 remains constant 
under all gauge transformations, which ensures that the meaning of helicity states, for 
instance 

sL= + ( I  +iT)e sR = + ( I  -iT)e vL = + ( I  +iq )v  vR=i( I - i7)E (1.13) 
for electrons and neutrino spinors, is invariant under gauge transformations. 
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As in (2.2) in [l] ,  we take the sixteen-component state vector to be 

1L = [ E L E R W R I T  (1.14) 

with the matrices {p , }  acting on the top pair and the bottom pair of spinors, while {A,} 
act on the different particle blocks in (1.14). The helicity projection operators in the 
tangent space T ( x )  are 

(1.15) 

As in 0 4 of [l],we obtain the electroweak interactions of the quarks by changing 
the representation of the elements of the Clifford algebra associated with the tangent 
space T ( x ) .  The representation is changed by applying an inner automorphism to the 
vector basis 

r, + T,riTil (1.16) 

h+ = $( 116 f i A 4 ~ 4 ~  1. 

where 

T, = exp[ -iA3p1 I a ]  (1.17) 

and 

cos 2 a  = -+. (1.18) 

We adopt the same principle as in [l] that the sixteen-component quark state vector 
has the same form as the lepton state vector (1.15). As before, our model is limited 
by the inclusion of only one colour of quark, and we make no attempt to include 
strong interactions or more than one generation. 

2. Gauge symmetries and interactions 

The two sets of gauge transformations generating the gravitational and electroweak 
interactions are essentially those given in 0 2 of [2] and in 0 2 of [ 11 respectively. For 
leptons, the sixteen-component state vectors are given by (1.14) and the kinetic term 
in the Lagrangian density is given at the beginning of 0 2 of [l], with ys replaced by 
q in (2.3) and (2.7) of [l]. As in (2.9) of [l] ,  the generators of the SU(2) and U ( l )  
symmetry groups are 

U1 = f i r 6 r 7  =$Alp3q ( 2 . 1 ~ )  

(2.lb) 

(2.lc) 

and 

P = $ i r 5 r 6 r 7 r 8  = $A4p3q. (2.ld) 

The spin gauge transformation generating the lepton electroweak interactions is, as in 
(2.11) of [l], 

Q( x)  = exp[ -igh+ U,@, (x) - ig’( h- U, + P) 04(x)] (2.2) 

with summation over a = 1,2,3.  The state vector (1.14) and the tangent space vectors 
{ri ; i = 1,. . . ,8} are transformed under the electroweak spin gauge transformations by 
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Invariance of the lepton Lagrangian under these transformations is ensured by introduc- 
ing the covariant derivative 

D w E W = d p  (2.3) 
where the electroweak spin connection is given by 

R, = igh, U, W,, + ig'( h- U, + P )  W,, 

=;{igh+(iA,p3~~ W,p + h3~4IW31.L) + ig'(h-A3~4I + iA4~3q) W4,,I (2.4) 
with summation over j = 1,2 .  Under the electroweak gauge transformations, the spin 
connection transforms according to 

R, + Qa,Q-' - Q(J,Q-') (2.5) 
which is equivalent to the usual SU(2) and U(1) transformations on { W,, ; a = 1 , 2 , 3 }  
and W4,,. As in [l], after reduction of the sixteen-component lepton Lagrangian to 
four-component form and rotation through the Weinberg angle, Cl,  gives the usual 
electroweak interactions for the electron-neutrino system. The transformation of the 
lepton Lagrangian density to the 'quark representation' through the inner automorphism 
(1.16)-( 1.18) produces the correct electromagnetic and weak interactions of the up 
and down quarks. The lepton Lagrangian kinetic term is invariant under the transforma- 
tion (1.16) and (1.17) and so is also correct for quarks. 

To introduce the gravitational field, let us consider the generalisation of the covariant 
derivative introduced in $ 1  of [2]. If 116  denotes the (16 x 16) unit matrix, the generalisa- 
tion of (1.10) of [2] is 

D+G = I168, - Gp (2.6) 

D,,J! = a P ~ , - r ~ , r J - ~ ~ , , , r l i  (2.7) 

and the covariant derivatives of the basis vectors {r,} are 

where {TJ,,} is the Christoffel vector connection. We note that the suffixes i, j range 
over the values i, j = 1,2 ,  . . . , 8 ,  but, since Mz is flat, it follows that 

r;, = o i=5 ,6 ,7 ,8and /o r j=5 ,6 ,7 ,8 .  (2.8) 
In place of (1.15) of [2] we assume that there is a gauge in which the eight parallel 
transport conditions: 

DFGrl = o i = 1 , 2 , .  . . , 8  (2.9) 
hold. We are also assuming that {Ar}, { p s }  and q are kept constant under the gravita- 
tional spin gauge transformations, so that, from (1.12), 

a,r, = o i = 5 , 6 , 7 , 8 .  (2.10) 

Equations (2.7)-(2.10) imply that 

[Gp, r i l =  0 i = 5 , 6 , 7 , 8  (2.11) 

and we deduce that G,, must be constructed from I, A 4 ,  p4 and the four Dirac basis 
vectors y l ,  y 2 ,  y 3 ,  y4 only. Then, as in § 1 of [2], the first four equations (2.9) imply that 

G, = GzA4p4yij i, j = 1 , 2 , 3 , 4  (2.12a) 

(2.12b) 
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and we have again chosen the arbitrary scalar component of G, to be zero. So the 
connection G, differs from its value in [2] only by the extra unit matrix factor A4p4. 
Therefore equations (1.20)-( 1.24) of [2] hold with only minor modifications; most 
importantly, the generalisations of (1.23) and (1.24) of [ 2 ]  are 

( 2 . 1 3 ~ )  A 4 P 4 ( a p Y u - a v Y p )  = [G,, A4P4Ypl-[Gur A4P4Yp1 

and 

Tr{gppgYrG,y~4P4[YP, Y11) = -16R (2.13b) 

where 

G,,=d,G,-a,G,+[G,, G,1 ( 2 . 1 3 ~ )  

Also, the gauge transformations under which DFG is covariant are, as in (1.18) and 

S = exp( O”A4p4yij) (2.14) 

and R is the curvature scalar of the spacetime manifold MI. 

(1.19) of [2], 

with 

G, + SG,S-’ - S(d,S-’). (2.15) 

The transformation S represents a local Lorentz transformation in the spin space 
associated with spacetime MI. 

The lepton electroweak generators { Ua}  and P are respectively bivectors and the 
quadrivector formed from {r,, r6, r7, r8}, and so commute with the bivectors A4p4 yo 
in S and G,. Since 7 also commutes with G,, it follows that the electroweak 
transformation Q and spin connection a, commute with the corresponding gravita- 
tional quantities S and G,. So the spin gauge transformation formed from combining 
the electroweak and the spin Lorentz transformations can be represented by either QS 
or SQ. 

The fact that Q and S commute also implies that the full covariant derivative 

D, = I16a, - G, - a, (2.16) 

is covariant under the combined transformation; that is, 

D,+ QsD,(Qs)-’ (2.17) 

provided that G, and a, transform by (2.15) and (2.5) respectively. The transformation 
T, used in the inner automorphism (1.16)-(1.18) to obtain the quark interactions also 
commutes with S. Hence our comments concerning the combined transformation also 
apply in the quark representation. 

We noted in [ I ]  that it was possible to use the commutator [ DPEW, DvEW] to define 
the ‘curls’ of the fields { Wap} and W4,, normalising them separately. With D, now 
given by (2.16), we find 

(2.18) [ D,, D,] = -igh, U, WagV - ig’( h- U, + P )  W4,,, + G,,, 

where 

w a p v  = ap wa, -&wap +g&abc[ wb+, w c ~ l  ( 2 . 1 9 ~ )  

w4,” = a , ~ ~ ~  -avw4, (2.19b) 

U = 1,2, 3 

and Guy is the bivector given by ( 2 . 1 3 ~ )  
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From (2.18) we can project out the curls of the four boson fields as the gauge- 
invariant traces: 

i Tr{h+Ua[Dp, Du1I/4g=3WaPv 

i Tr{(h- U, + P)[D,, Du]}/12g‘=; W4pLY. 

The bivector Gpu is also clearly gauge-covariant. So it is possible to construct, as in 
(2.26) of [l] and (2.4) of [2], the gauge-invariant and separately normalisable ‘free 
boson’ and quadratic curvature Lagrangian terms 

f Waru Wgy (2.20a) 

i w4pu Wf (2.20 b) 

and 

R, up= R CL upu (2.20c) 

However, we noted in [l] that, if the Weinberg angle is given by O w =  ~ / 6 ,  the 
normalisation factors of the terms ( 2 . 2 0 ~ )  and (2.20b) are equal. For our present 
model, in which generation mixing is ignored and strong interactions are not included, 
this is a good approximation to the measured value. We shall therefore adopt the 
principle suggested in [l], that the terms (2.20) are all derived from [D,, D,] using a 
common normalisation factor. Then, in order to obtain the correct normalisations for 
(2.20~2, b), the kinetic part of the boson Lagrangian density must be, as in (3.23) of [l], 

L B K  = (1/16g2) Tr{gppgu“[D, ,  ~ , I [ D p ,  Dull 
= f  Waru WaP”+fW4, ,  W4””+ (R,,p,Rp’”P“/16g2). (2.21) 

This Lagrangian density is invariant under the transformation (1.16)-( 1.18) to the 
quark representation. It is very interesting that the principle that fixes the Weinberg 
angle also determines the coefficient of the last term in (2.21), which we call the ‘spin 
gravity’ Lagrangian term. In (2.12) of [2], the coefficient of this term was quite different, 
depending upon the mass m of a ‘representative fermion’ in the model; it is far more 
satisfactory that the coefficient depends only upon the fine structure constant, as in 
(2.21). We shall discuss the consequences of this change of normalisation later. 

3. Mass, gravitation and the frame field 

One of the central ideas of [ 1,2] is the rewriting of the mass term in the Dirac equation 
in terms of the frame field. In order to deal with the masses of both quarks and leptons, 
we shall introduce Lagrangian mass terms in the form (4.8) of [l]. The four lepton 
and quark masses {me, mu, mu, md} are related to mass constants {pi ; i = 1,2,3,4} by 
the equations (4.ll)and (4.22) of [l]: 

~ I + p 2 + / 1 . 3 + ~ 4 =  m~ ( 3 . 1 ~ )  

Fl-p2+ p3- p4= mu (3 . lb)  

PI +pZ- f (p3+p4)  = mu ( 3 . 1 ~ )  

PI - p2 -f(p3 - p 4 )  = md. (3 . ld)  
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As in [ 11 we take the view that fermion mass is an interaction between a fermion and 
the frame field, factoring out coupling constants {A} from the mass constants { p l } ;  the 
'frame inertia' 5 of the frame field then satisfies 

PI = 4x5 i = 1,2,3,4.  (3.2) 

+,(XI = lr,(x) (3.3) 

The factor 5 is incorporated into the frame field 

and by using the identity y'"(x)-y,(x) = 41, which holds on any non-singular patch of 
a manifold, a fermion scalar mass term can be written in the form 

P J  =.Lf;rP(x)4,(x). (3.4) 

(3.5) 

Then, as in (4.8) of [ l] ,  the lepton mass term is 

5 & ~ 4 ~ 1 ~ , [ i f l ~ 4 ~ 1 $ ,  + i f 2 A 3 ~ i 4 p  - ihA4p2%& - i f4~3~2vd, I+  + coni  
Using (3.la, b), (3.2) and (3.3), and reducing (3.5) to four-component form, gives the 
correct electron and neutrino mass terms. As in [l], when (3.5) is transformed to a 
different representation of the Clifford algebra using (1.16)-( 1.18), terms equivalent 
to the quark mass terms are obtained. Adding the term 

E, = if1 A4P14, + if2A3pI 4, - ihA4P2 74, - if4A3P2 774, (3.6) 

A, = D, + E ,  (3.7) 
(3.8) 

to the covariant derivative (2.16) gives the 'extended covariant derivative': 

= I16a, - G, -a, + E,. 

The terms 0, and E, in (3.7) are separately gauge covariant, which implies that the 
three commutator combinations 

[D,, DUI [D,, E v 1 -  [Du, 4 1  [E,? E 1  (3.9) 
are also separately gauge covariant and so can be separately normalised. This turns 
out to be necessary in this model, as it was in the models in [l] .  We still conjecture 
that, in a full theory, the normalisations of terms such as (3.9) should be the same, all 
contributing to the Lagrangian through a term of the form 

-K Tr{g~Pgu"[A,, LILAp, 4711 (3.10) 

where K is an appropriate constant. We have already been able to assume this property 
for the Lagrangian contributions arising solely from 0,. 

We can regard the trace in (3.10) as made up of traces involving pairs of terms of 
the form (3.9). If we normalise each of these terms separately, giving 

Nl[D,, D"1 N2([D,, E,] - [ D v ,  -51 )  N3[J5,, Eu1 (3.11) 
then we can form nine different traces involving pairs of these terms. However, the 
only element of the (16x 16) Clifford algebra which has non-zero trace is II6; this 
ensures that five of these nine traces are zero. The four non-zero traces are 

N: Tr{gWPg""[D,, Dvl[Dp, Dull (3.12a) 

N: Tr{gfiPguu([D,, E 1  - [Dy, EPl)([Dp, Eul - [Du, E,])} (3.12b) 
N: Tr{g~Pgu"[E,, EuI[Ep, EU1) ( 3 . 1 2 ~ )  

and 
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Each of these terms is relativistically and gauge invariant, and so can contribute 
independently to the Lagrangian. 

The contribution ( 3 . 1 2 ~ )  has already been considered in 0 2 and contributes the 
expression (2 .21)  to the Lagrangian. The normalisation factor in ( 3 . 1 2 ~ )  thus requires 

N l  = 1 / 4 g .  (3 .13)  

Using ( 3 . 3 ) ,  and taking the traces of the A and p matrices, the term ( 3 . 1 2 ~ )  is equal to 

4N:F4L4 Tr{gL"Pguu[Y, ,  Y u I I Y p ,  %I) 
where, as in (4 .16)  of [ l ] ,  

F 2 = z  f:. (3 .14)  

Since 

r r,, YuI[%, %I = 4(gpugup - &Lpgvu)I  

6 4 N 3 F  5 g g (g ,ugYP-g ,pguu)=64N3F 5 ( w , " - . ~ p : )  
and Tr I = 4 ,  ( 3 . 1 2 ~ )  is equal to 

2 4 4 p p  uu 2 4 4  

= -768 N : F 4 1 4  

= - 3 N : M 4  (3 .15)  

where, as in (4 .18)  of [ l ] ,  

M 2 = z p : .  (3 .16)  

The essential point about the result (3 .15)  is that the term is constant for all non- 
degenerate metrics and in all gauges, and so provides a cosmological constant term 
in the Lagrangian. We now consider the remaining terms ( 3 . 1 2 b )  and ( 3 . 1 2 d ) .  

In a gauge satisfying the parallel transport condition ( 2 . 9 ) .  G, takes the spacetime 
bivector form defined by (2 .12)  and (2 .13) .  Since [y,, y y ]  is also a spacetime bivector, 
only the term G,,, in (2 .18)  contributes to ( 3 . 1 2 d ) .  As in the calculation of (2 .10)  of 
[ 2 ] ,  this contribution is, using ( 2 . 1 3 b ) ,  

(3 .17)  2 N 1 N 3 F 2 l 2  T r { g ~ p g Y u G , u A 4 p 4 [ ~ p ,  y u ] }  = - 2 N l N 3 M 2 R .  

To make this equal to the Einstein-Hilbert free gravitational Lagrangian density 

LG = R / 1 6 v G  (3 .18)  

where G is the gravitational constant, we must choose 

N3 = - ( 3 2 n G M 2 N l ) - '  

= - ( g / 8 n G M 2 )  (3 .19)  

using ( 3 . 1 3 ) .  The ratio of the two normalisation constants (3 .13)  and (3 .19)  is thus 

N I /  N3 = - 2 v G M 2 / g 2  (3 .20)  

which is of the order of the ratio of the gravitational to the electrical force between 
two charged particles. It is, of course, no surprise that this ratio enters into a model 
which deals with both electroweak and gravitational forces. The result (3 .20)  demon- 
strates the extreme impossibility of a common normalisation factor in this particular 
theory. 
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To evaluate (3.12b), we note first that 

= [ 1 1 6 d p ,  E v ] - [ I i d v ,  E,I-[G,, EuI+[Gv, E p I - [ f l ~ , ,  E V ~ + [ ~ L J ,  E,] 

and that the first four terms here cancel in a gauge in which (2.9) holds, using the 
equality ( 2 . 1 3 ~ ) .  So (3.126) becomes 

(3.21) 

If we choose the general normalisation factor 

N, = 1 /4k  (3.22) 

where k is a constant, then the calculation of (3.21) is exactly as in [ l ] ,  leading to the 
result 

LM = -$(Mg/2k) ’gwV[ W,,W,,,+ W2,W2.+sec2 OwZ,Zv]. (3.23) 

This calculation depends upon identities similar to those in (3.17) of [ l ] ,  for example 

TrrgPv~:P:7,7,l= 64 ( 3 . 2 4 ~ )  

and 

Trrg~*”A:P:TY,TY”I = 64 (3.24b) 

which hold independently of the manifold metric or the choice of gauge. The boson mass 
terms (3.23) thus depend on the gauge only through the gauge dependence of the potentials 
{ Wl,, Z,}. In [ 13 we introduced the ‘Dongpei gauge’, in which the { y,} are constant. 
On the curved manifold M this gauge does not exist; the concept is, however, irrelevant, 
since identities such as (3.24) are universally true through (1.3).  

As in (4.19) and (4.20) of [ l ] ,  the mass of the W boson is identified as 

M w  = ( M g / 2 k ) .  (3.25) 

However, since we do not equate k to F, as in [ l ] ,  this identification of Mw does not 
fix the value of the frame inertia 4‘; we shall discuss this point further in 0 4. As in 
[ l ] ,  (3.25) implies that the kinetic and mass normalisation constants N1 and N,, given 
by (3.13) and (3.22), are not equal in this model, since (3.25) can be written 

NI/N2= k / g =  M I 2 M w f  1. 

But if the model were amended to include fermions with mass of the order of M w ,  
the equality N1 = N, could hold. So the hypothesis that the boson Lagrangian will 
ultimately be of the form (3.10) requires the ‘composite fermion mass’ M to equal 
2 M w ;  it is certainly possible that three of four generations of fermions could give this 
result. 

One major difference between the results of this paper and those of [ l ,  21 is the 
normalisation of the last term in (2.21), the ‘spin gravity’ term. We can write the sum 
of this term and the Einstein-Hilbert term (3.18) as 

( R  + m~2R,v, ,RC””P“)/16~G (3.26) 
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where 

.irGmi = g2.  (3.27) 

So m, is of the order of the Planck mass, and the range of the short-range ‘spin gravity’ 
force resulting from the quadratic term in (3.26) is the Planck length. This is, in fact, 
far more satisfactorily than the conclusion in [2], that the range of these forces was 
of the order of the Compton wavelength of a ‘typical fermion’. 

Under the transformation (1.16) to the quark representation, the normalised commu- 
tators (3.11) are covariant, as we pointed out in § 4 of [l], so that the traces (3.12) are 
unchanged by the transformation to the quark representation. Therefore all the boson 
Lagrangian density terms (2.21), (3.18) and (3.23) are invariant under the transforma- 
tion from lepton to quark representation. This is satisfactory, since the boson field 
properties should not depend upon the fermion representation. 

4. Summary and discussion 

In our two previous papers [ 1,2], we formulated spin gauge theories of first-generation 
electroweak interactions and of gravitation. In this paper we have shown that we can, 
with a few modifications, combine these results, since the generators of the electroweak 
and gravitational gauge transformations commute. We shall now summarise our 
assumptions and results. 

(i) We use an eight-dimensional manifold M which is a combination of a four- 
dimensional curved submanifold representing spacetime and a flat 4-dimensional 
submanifold. The tangent space to M is spanned by eight anticommuting basis vectors 
{ri; i = 1, .  . . ,8} of the Clifford algebra C(2,6). 

(ii) The generators of the electroweak gauge transformations are constructed from 
the basis vectors Ts, r6, r,, Ts and the helicity projection operators. The generators 
of the gravitational interaction are the (Lorentz) bivectors of spacetime. We use a 
representation of {ri ; i = 1,2,3,4} which conrains the Dirac matrices { yt ; i = 1,2,3,4} 
as a factor. The matrices T , ( x )  = h : ( x )  Ti are x dependent through ( a )  the vierbein 
field h : ( x )  and ( b )  the spin gauge transformations. This second dependence is 
characteristic of spin gauge theories and ensures that { T , ( x ) }  must be regarded as a 
field. Since T , ( x )  are the basis vectors, we call this field the ‘frame field’. 

(iii) By factorisation of the mass term in the Dirac equation, fermion mass is 
reinterpreted as an interaction of a fermion with the frame field; so mass is no longer 
seen as a purely intrinsic property of particles, as in Newtonian mechanics. 

(iv) By adding the frame field interaction term to the electroweak and gravitational 
bivector interaction terms in the ‘extended covariant derivative’, we obtain Lagrangian 
density terms corresponding to ( a )  the electroweak boson mass matrix (with an 
arbitrary multiplicative constant) and ( b )  Einstein-Hilbert gravitation. 

(v) The standard electroweak and gravitational theories are thereby modified in 
the following ways: ( a )  the Higgs-Kibble mechanism is not needed for deriving the 
boson mass matrix and ( b )  the quadratic ‘spin gravity’ term, providing an additional 
short-range interaction, is added to the usual Einstein-Hilbert Lagrangian density. 

(vi) As far as possible, we have adopted the principle of ‘equal normalisation’ 
expressed in (3.10). This principle has to be violated for the Einstein-Hilbert term, 
the familiar factor of order arising from the different normalisations. The remaining 
‘kinetic’ and ‘mass’ terms in the Lagrangian density can have equal normalisation if 
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( a )  the Weinberg angle is r r / 6  and the ratio of the ordinary to spin gravitational terms 
is of the order of the square of the Planck length and ( b )  the ‘combined fermion mass’ 
is 2Mw, implying that there are fermions in nature whose mass is of the order of M,. 

In this paper, the concept of the ‘frame field’ plays a central role and occurs in 
several different physical contexts. 

(i)  The spacetime components contain the Dirac matrices as factors, so the frame 
field is related in the usual way to the spin and energy sign of fermion states. 

(ii) Fermion mass is seen as an interaction between a fermion and the frame field, 
with interaction strength proportional to the fermion mass. 

(iii) The correct electroweak boson mass matrix is derived by including the frame 
field interaction in the ‘extended covariant derivative’. 

(iv) Through the basic Clifford algebra relation (1.3), the frame field is related to 
the metric and thus, in spacetime, to gravitation. 

(v) The inclusion of the frame field term in the extended covariant derivative also 
leads to the usual gravitational Lagrangian density, so we are proposing a microscopic 
theory of gravitation, with a very close relationship between particle masses and gravity. 

(vi) The frame field is seen as a background to other fields, defining the metric. 
The philosophical concept of ‘empty space’ appears to be redundant. 

(vii) The close relationship of the frame field to gravity is underlined by the fact 
that the ‘free frame field’ term in (3.15) of [ l ]  is absorbed when gravitation is included 
in the model. 

It is well known that fermion mass breaks chiral symmetry; it is less well known 
that the free neutrino equation is the extension of the Cauchy-Reimann equations to 
spacetime [3], so that a fermion mass term also ‘breaks analyticity’. Close examination 
of our calculations reveals that non-zero boson masses arise because helicity symmetry 
is broken. So mass is an analytic and algebraic disaster. 

Adding the spin gravity term to the Einstein-Hilbert term in (3.28) changes the 
second-order Einstein equations to fourth-order equations; as we noted in [l], this 
type of equation has been proposed in order to help the convergence of gravitational 
theories and to account for inflation. We are interested in using the extra boundary 
conditions to fit the properties of a fermion source at short distances. References to 
several papers which discuss these fourth-order equations are given in [ 11. 

Our model has some obvious limitations: it accounts for only one generation of 
particles, strong interactions and colour are not included, the theory is not quantised 
and we have not studied renormalisation. The problem of renormalisation is now 
more complicated than in [ 13, since gravity and spin gravity have to be included. An 
apparent arbitrariness of our model is that the electroweak generators have been chosen 
phenomenologically in order to give the correct lepton interactions. We have noted 
that these generators happen to satisfy certain conditions essential to the successful 
formulation ofthe theory, but we have not asked the converse question: what restrictions 
on the generators follow from the imposition of these essential conditions? 

In order to include gravitation, we have curved the spacetime dimensions. The 
higher dimensions are, however, flat. An obvious possible development of our model 
would be to allow the higher dimensions also to be curved, and to introduce Kaluza- 
Klein ideas; this is one way in which the Planck length might appear more naturally. 

One unanswered basic question is whether, in a quantised theory, frame field quanta 
can be separately observed. The basic relations (1.3) might be interpreted as a statement 
that a ‘graviton’ is the symmetric state of two frame field quanta; is this the only 
combination in which these quanta can be observed? The question of unitarity of the 
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theory also arises, partly because the frame field has zero mass, and so has long range. 
The long-range forces may, in fact, turn out to be useful in explaining Mach’s principle: 
they might provide a preferential frame of reference relative to the background of stars. 
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